

An electrochemical platform for studying biomembrane processes

By Lucia Bucucci

LAP Lambert Academic Publishing Jun 2014, 2014.

Taschenbuch. Book Condition: Neu. 220x150x8 mm. Neuware - Tethered bilayer lipid membranes, tBLMs, are biomimetic membranes consisting of a lipid bilayer interposed between the aqueous solution and a hydrophilic chain, called spacer, anchored to a metal electrode, which are used to incorporate single peptides or membrane proteins, so as to elucidate their structure-function relationships. Hg is a particularly convenient supporting electrode material for tBLMs thanks to its liquid state, which imparts to the lipid bilayer a fluidity and lateral mobility comparable with that of biological membranes, but with a much higher robustness and resistance to electric fields. The free movement of lipid molecules enables mercury-supported tBLMs to react to the presence of proteins, charges and physical forces in a dynamic and responsive manner, mimicking the functionality of living cell membranes. This review describes the way in which the structure of these tBLMs is affected by the incorporation and functional activity of peptides and small proteins and the mode of formation of ohmic or voltage gated ion channels, by using electrochemical impedance spectroscopy, potential-step chronocoulometry, cyclic voltammetry and phase-sensitive AC voltammetry. 128 pp. Englisch.

DOWNLOAD

READ ONLINE

[5.72 MB]

Reviews

Very beneficial to all category of folks. We have study and that i am sure that i will planning to go through yet again again in the future. Its been printed in an extremely straightforward way in fact it is just soon after i finished reading this pdf where actually changed me, alter the way i really believe.

-- Emmett Mann

Comprehensive information! Its this sort of great go through. It really is rally interesting throgh studying time. I am just quickly can get a satisfaction of looking at a created pdf.

-- Alexandra Weissnat